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Abstract

Natural products are chemical compounds that form the basis of many therapeutics used in

the pharmaceutical industry. In microbes, natural products are synthesized by groups of colo-

calized genes called biosynthetic gene clusters (BGCs). With advances in high-throughput

sequencing, there has been an increase of complete microbial isolate genomes and meta-

genomes, from which a vast number of BGCs are undiscovered. Here, we introduce a self-

supervised learning approach designed to identify and characterize BGCs from such data. To

do this, we represent BGCs as chains of functional protein domains and train a masked lan-

guage model on these domains. We assess the ability of our approach to detect BGCs and

characterize BGC properties in bacterial genomes. We also demonstrate that our model can

learn meaningful representations of BGCs and their constituent domains, detect BGCs in

microbial genomes, and predict BGC product classes. These results highlight self-supervised

neural networks as a promising framework for improving BGC prediction and classification.

Author summary

Biosynthetic gene clusters (BGCs) encode for natural products of diverse chemical struc-

tures and function, but they are often difficult to discover and characterize. Many bioin-

formatic and deep learning approaches have leveraged the abundance of genomic data to

recognize BGCs in bacterial genomes. However, the characterization of BGC properties

remains the main bottleneck in identifying novel BGCs and their natural products. In this

paper, we present a self-supervised masked language model that learns meaningful repre-

sentations of BGCs with improved downstream detection and classification.

Introduction

Natural products are chemical compounds that form the basis of many pharmaceuticals and

clinical therapeutics [1]. Their chemical structures are used in the development of
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antimicrobial drugs, anticancer therapies, and other therapeutic areas [2]. To initiate the

discovery of natural products, the pharmaceutical industry has traditionally relied on

laboratory research, yet this approach cannot feasibly capture the entire chemical diversity

of natural products. Thus, new methods are needed to advance natural product discovery

[3].

Diverse natural products can be produced in living organisms via groups of genes called

biosynthetic gene clusters (BGCs). Genome mining has become a powerful tool for exploring

the complex and diverse chemical space of natural products [3]. Fast, inexpensive genome

sequencing technology has contributed to the advancement of BGC identification and, by

extension, natural product discovery. This approach has been particularly successful in

microbes, where BGCs are often a group of physically colocalized genes whose sequence and

function dictates the synthesis of natural products. This discovery of BGCs supports the assem-

bly-line enzymology model, where biosynthetic systems are multimodular and each module

contains a set of domains that collectively catalyze one round of elongation and chemical mod-

ification of the growing natural product peptide chain [4]. This type of natural product synthe-

sis is particularly characteristic of multimodular polyketide synthases (PKS) and non-

ribosomal peptide synthases (NRPS), which are two major biosynthetic systems that synthesize

polyketides and non-ribosomal natural product peptides, respectively [5]. However, evidence

suggests that much of the biosynthetic capacity of the microbial world remains unexplored [6].

Improved identification and characterization of BGCs directly from genomic data could accel-

erate the discovery of novel natural products with therapeutic relevance.

Identification of BGCs directly from genomic sequences is critical to navigating natural

product space and nominating novel natural products. While complementary data modalities

involving joint genome sequencing and mass-spectrometry data can be used to link products

with gene clusters [7], the majority of known BGCs were characterized directly from DNA

sequencing performed without any associated analysis of chemical structures in the sample. As

such, computational methods which focus exclusively on identifying BGCs from genomes are

essential components of BGC discovery pipelines.

antiSMASH (ANTIbiotics & Secondary Metabolite Analysis SHell) is an early tool for BGC

discovery that uses a set of curated profile-Hidden Markov Models (pHMMs) to call biosyn-

thetic gene families and a set of heuristics to tag a portion of a genome as a BGC [8, 9]. anti-

SMASH then annotates these called BGCs by using carefully curated rules based on expert

knowledge. Similarly, ClusterFinder uses a Hidden Markov Model (HMM) to identify gene

clusters of known and unknown classes [10]. Despite their effectiveness, HMM-based algo-

rithms do not capture higher-order dependencies between genes, limiting their accuracy and

generalizability [11]. Likewise, rule-based methods are limited by the need for human expertise

and do not generalize well to new BGC classes.

A recent approach, DeepBGC, introduced a deep learning genome-mining strategy for bio-

synthetic gene cluster annotation that addresses these limitations [12]. Similar to antiSMASH,

DeepBGC uses sets of curated pHMMs to call biosynthetic gene families; however, it uses a

supervised neural network to predict BGC boundaries and annotate BGC function. Specifi-

cally, they employ a bidirectional long short-term memory (Bi-LSTM) recurrent neural net-

work (RNN), which offers the advantage of capturing short- and long-term dependencies

between adjacent and distant genes [13]. DeepBGC reported promising improvements in the

identification of BGCs in microbial genomes. However, DeepBGC is trained on a small num-

ber of high-quality annotations, and the supervised approach requires mining examples of

genes that are not part of BGCs. The quality of the predictions is therefore likely to depend on

the quality of the negative examples, which must be similar to BGC sequences while ideally

containing no false negatives.
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Rather than relying on expert-curated annotations and negative examples, self-supervised

masked language models promise the ability to learn biologically-relevant patterns directly

from a large set of BGC examples. Recently, self-supervised masked language models of biolog-

ical sequences have been used to study proteins [14–21], DNA [22], RNA [23, 24], and glycans

[25, 26]. In these models, a neural network is trained either to reconstruct the original

sequence from a corrupted version of the sequence, or to predict the next element in the

sequence given the preceding elements. After training on a large dataset, such as all protein

sequences in UniProt [27], the model can be used for zero-shot predictions of fitness [28] or

structure [29], and can additionally be fine-tuned on downstream supervised tasks [30, 31].

To accelerate identification and classification of BGCs, we developed a self-supervised neu-

ral network masked language model of BGCs from bacterial genomes (Fig 1). Our model rep-

resents BGCs as chains of functional protein domains, and uses ESM-1b [14], a protein

masked language model, to obtain pretrained embeddings of functional protein domains with

amino acid-level context. We then train a convolutional masked language model on these

domains to develop meaningful learned representations of BGCs and their constituent

domains. The architecture for our model is based off of convolutional autoencoding represen-

tations of proteins (CARP) [32], a masked language model of proteins, and we will therefore

refer to it as Biosynthetic Gene CARP (BiGCARP). We leverage these representations to detect

BGCs from microbial genomes and then classify them based on their natural product class.

We further investigate the potential advantages of our model by comparing our approach with

DeepBGC, and demonstrate that BiGCARP achieves improvements in BGC prediction and

natural product classification. BiGCARP highlights self-supervised neural networks as a prom-

ising framework for improving BGC characterization.

Results

Self-supervised training

We first developed a self-supervised training scheme to train BiGCARP to learn representa-

tions of BGCs. As BGCs have a hierarchical structure, they can be represented at four main lev-

els. From the least-to-most granular, these are: genes, Pfam domains (families of evolutionary-

related proteins), amino acids, and nucleotides. We note that more granular units of represen-

tation lead to longer sequences. BGCs typically contain several dozen genes, each of which

contains one or more Pfam domains. Each Pfam domain contains tens to hundreds of amino

acids, and each amino acid is encoded by three nucleotides. This introduces a trade-off

between modeling short sequences where each unit is complex or modeling long sequences

where each unit is simple. In order to balance input sequence length and information content

of individual units, we chose to represent BGCs as sequences of Pfams. This is the same level

chosen by DeepBGC [12]. As shown in Fig 1, during training, we append a BGC product class

token to the start of each BGC Pfam sequence in order to learn BGC product classes from their

Pfam domain sequences. We then corrupt the sequence according to the BERT [33] corrup-

tion scheme and train Biosynthetic Gene Convolutional Autoencoding Representations of

Proteins (BiGCARP) to reconstruct the original class token and Pfam sequence. BiGCARP

combines the ByteNet encoder dilated CNN architecture from [34] with linear input embed-

ding and output decoding layers, as shown in Fig 2a.

Pfam embeddings map protein families from our vocabulary to vectors into a 1280-dimen-

sional space, and thus serve as the inputs to BiGCARP. We train three versions of BiGCARP

with different initial Pfam embeddings. The BiGCARP-ESM-1b-finetuned and BiGCAR-

P-ESM-1b-frozen models are both initialized with Pfam embeddings obtained by averaging

the per-residue output from ESM-1b for each domain. BiGCARP-ESM-1b-finetuned has its
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Fig 1. Self-supervised deep learning workflow for characterizing biosynthetic gene cluster (BGC) properties. Schematic of the workflow for

characterizing BGCs with BiGCARP, a self-supervised deep neural network. We curate a dataset of annotated BGCs from antiSMASH for training

BiGCARP. We then use ESM-1b [14], a protein masked language model, to obtain pretrained embeddings of protein family (Pfam) domains in our

dataset and to explore whether pretrained Pfam domain embeddings show improvement on the quality of their representations. By representing BGCs

as chains of Pfams, we train a self-supervised masked language model on these domains to characterize BGC properties in microbial genomes. We

leverage these learned representations to detect BGCs from microbial genomes and to predict their natural product class.

https://doi.org/10.1371/journal.pcbi.1011162.g001

PLOS COMPUTATIONAL BIOLOGY BiGCARP: Deep self-supervised learning for BGCs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011162 May 23, 2023 4 / 14

https://doi.org/10.1371/journal.pcbi.1011162.g001
https://doi.org/10.1371/journal.pcbi.1011162


Fig 2. BiGCARP architecture with validation performance curves on the self-supervised dataset. (a) We use the masked language model

objective described in [33] to train BiGCARP to reconstruct the BGC product class and Pfam sequence on our self-supervised dataset, which

contains around 127,000 BGC Pfam sequences. BiGCARP is a dilated 1D-convolutional neural network masked language model based on

CARP [32] and ByteNet [34]. (b) Validation loss (cross-entropy) and accuracy for BiGCARP with different initial Pfam embeddings.

https://doi.org/10.1371/journal.pcbi.1011162.g002
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embeddings finetuned during self-supervised BGC training, while BiGCARP-ESM-1b-frozen

has the initial embeddings frozen at the onset of self-supervised BGC training. Finally, BiG-

CARP-random is initialized with a random Pfam embedding, which is finetuned during self-

supervised BGC training. All three versions of BiGCARP are trained on BGC sequences

extracted from the antiSMASH dataset [8, 9]. We used approximately 127,000 BGC sequences

and split the dataset 80/10/10 between training, validation, and testing, respectively. The train-

ing set is deduplicated against all datasets used in downstream evaluation. We refer the reader

to Materials and Methods for details about the model training and architecture and the self-

supervised training dataset.

Fig 2b plots the learning curves of the validation performance on the self-supervised dataset

for all three versions of BiGCARP. We discover BiGCARP-ESM-1b-frozen is outperformed by

BiGCARP-ESM-1b-finetuned and BiGCARP-random, which both show similar performance

and attain an accuracy of around 75%.

Learned embeddings encode relevant representations of Pfam domains

We used uniform manifold approximation and projection (UMAP) to visualize the input

Pfam embeddings after self-supervised training on the antiSMASH training set (Fig 3). Each

protein family is represented as a single point, and protein families of similar sequence and

function should have similar representations and thus be mapped to nearby points. In order to

determine if our embeddings capture these properties of related Pfam domains, we plot every

Pfam domain that falls under the ten most common Pfam superfamilies (clans) in our self-

supervised dataset: NADP Rossman (CL0063), P-loop NTPase (CL0023), Zn Beta Ribbon

(CL0167), E-set (CL0159), HTH (CL0123), TPR (CL0020), PDDEXK (CL0236), MBB

(CL0193), Beta propeller (CL0186), and OB (CL0021) [35].

We find that initializing Pfam domain embeddings using ESM-1b improves the quality of

the learned representations, as these embeddings take into account protein family amino-acid

sequence and protein structural information. Fig 3 indicates BiGCARP-ESM-1b and BiGCAR-

P-ESM-1b frozen embeddings form clear clusters of structurally related Pfam domains, and

we find that the Pfam domains close in representation space have similar protein structure

rather than amino acid residue sequence, as shown in S1 Fig. Randomly initialized Pfam

embeddings shows minimal interpretable information after self-supervised BGC training;

Fig 3. Relevant representations of Pfam domains are encoded in learned ESM-1b embeddings. Uniform manifold approximation and projection

(UMAP) visualization of learned representations of Pfam domains from BiGCARP with different initial Pfam embeddings.

https://doi.org/10.1371/journal.pcbi.1011162.g003
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however, the variance explained in the randomly initialized Pfam embeddings is likely more

uniformly distributed over the 1280 dimensions, and thus Fig 3 may not be illustrating how

much information is actually being captured over the entire randomly initialized Pfam

embedding.

BiGCARP captures meaningful patterns in BGCs

We next evaluated BiGCARP’s pretraining performance after self-supervised training

(Table 1). We use the exponentiated cross entropy (ECE) metric for evaluating BiGCARP.

This metric provides a measure for a model’s ability to narrow its prediction of a token from

the set of options. An ideal model would have an ECE of 1, whereas a model choosing at ran-

dom would have an ECE of the vocabulary size, which in our case is 19,550 for Pfam domains

and 55 for BGC product classes. On our antiSMASH dataset test set, BiGCARP-ESM-1b-fine-

tuned achieves the lowest ECE on the Pfam domains, while BiGCARP-ESM-1b-frozen

achieves the lowest ECE on the product classes despite performing worse on domain ECE.

In addition, using the 9-genomes validation set from DeepBGC [12], we evaluate whether

BiGCARP can identify the start locations of BGCs and whether each domain is in a BGC with-

out further supervised training. We append a mask token to the beginning of every window of

64 domains in the dataset and pass them through BiGCARP. Intuitively, if the window is the

start of a BGC, the model’s BGC class prediction should have low entropy, and its reconstruc-

tions of the domains should be both low-entropy and have low cross-entropy with the original

input domain. This scheme is shown in Fig 1. We refer the reader to Materials and Methods

for details about scoring start positions and BGC Pfam domains. As shown in Table 1, all three

versions of BiGCARP can detect BGC start locations and whether domains are part of a BGC,

with BiGCARP-ESM-1b-frozen performing worse on both tasks than the other two versions.

We then finetuned BiGCARP on the training dataset reported in DeepBGC v0.1.0 [12],

which uses all BGC domain sequences from MiBIG (version 1.4) as positive BGC samples and

10128 negative examples for 100 epochs and choose the epoch with the highest area under the

receiver operating characteristic curve (AUROC) on the 9-genomes validation set for further

testing (Methods). Table 2 shows domain-level classification performance using AUROC on

Table 1. Pretraining results, including the exponentiated cross entropy (ECE) metric on the pretraining test set and area under the receiver operating characteristic

curve (AUROC) for BGC start locations and domains on the 9-genomes validation set.

BiGCARP

ESM-1b-finetuned ESM-1b-frozen random

pretrain test set (ECE) Pfam domain 4.64 4.99 4.67

product class 1.50 1.46 1.50

9-genomes (AUROC) start 0.720 0.701 0.723

domain 0.876 0.611 0.856

https://doi.org/10.1371/journal.pcbi.1011162.t001

Table 2. Domain AUROC and average precision after supervised training on the DeepBGC training set.

pretraining 6 genomes 9 genomes

AUROC AvgPrec AUROC

BiGCARP ESM-1b finetuned 0.941 0.447 0.950

BiGCARP ESM-1b frozen 0.940 0.405 0.949

BiGCARP random 0.936 0.435 0.943

none 0.937 0.429 0.950

DeepBGC 0.921 0.398 0.934

https://doi.org/10.1371/journal.pcbi.1011162.t002
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the 9-genomes validation set and AUROC and average precision (AvgPrec) on the 6-genomes

test set from DeepBGC. Note that the DeepBGC results on 9-genomes are for cross-validation

directly on 9-genomes. All three versions of BiGCARP outperform DeepBGC on the

6-genomes test set and 9-genomes validation set. However, self-supervised training did not

improve performance on the 6-genomes test set for BiGCARP.

BiGCARP predicts BGC product classes

In addition to detecting BGCs in microbial genomes, predicting their product classes would

provide further aid in discovering new natural products. BiGCARP learns to predict a BGC’s

product class from its Pfam sequence by reconstructing masked class tokens during self-super-

vised training (Fig 1). During self-supervised training, we use the antiSMASH product classes.

In order to compare BiGCARP’s performance to DeepBGC, we map antiSMASH product clas-

ses to those in the Minimum Information about a Biosynthetic Gene cluster (MIBiG) dataset

used in DeepBGC [12, 36]. DeepBGC trains a random forest classifier on its embeddings to

predict BGC product classes. In contrast, we simply append a mask token to the beginning of

each BGC sequence and evaluate the model’s predictions for the identity of the mask, remov-

ing the need to train an additional model.

All three versions of BiGCARP out-perform DeepBGC on average AUROC across the

product classes, and ensembling their predictions via their arithmetic mean further improves

accuracy, as shown in Table 3 and S1 Table. BiGCARP-ensemble outperforms DeepBGC on

AUROC for four out of seven product classes. This is likely because the antiSMASH training

set is approximately 100-times larger than MIBiG. Performance is generally similar for product

classes that are well-represented in both datasets, with the largest gains coming in the “other”

and alkaloid classes, which are under-represented in MIBiG. This underscores the importance

and utility of training on a large and diverse BGC dataset. However, BiGCARP does not do as

well as DeepBGC on precision and recall. This is likely because directly training on MIBiG

labels enables better calibrated predictions. We note that DeepBGC is further advantaged here

by reporting 5-fold cross-validation results on MIBiG, while BiGCARP is not trained on any

sequences from MIBiG.

BiGCARP identifies BCGs from unannotated microbial genomes

We compared the ability of BiGCARP and antiSMASH 6.1.1 [37] to identify BGCs in 773 ran-

domly-chosen bacterial genomes released after the antiSMASH 3.0 database. antiSMASH 6.1.1

identified 4287 clusters (renamed ‘regions’ in antiSMASH 5.0 and later). Of these, we were able

to match the Pfam domain sequences for 3174 clusters to those produced by our domain anno-

tation pipeline (see Methods). We treat these 3174 clusters identified by antiSMASH as ground

Table 3. Product classification results on MIBiG.

antiSMASH BiGCARP ensemble DeepBGC

n MIBiG AUROC precision recall AUROC precision recall AUROC precision recall

polyketide 644 0.870 0.901 0.806 0.898 0.838 0.835 0.903 0.882 0.890

NRP 433 0.915 0.939 0.852 0.898 0.791 0.849 0.907 0.910 0.857

RiPP 199 0.897 0.958 0.799 0.963 0.616 0.875 0.907 0.931 0.824

saccharide 179 0.607 0.769 0.223 0.773 1.000 0.006 0.811 0.904 0.606

other 154 0.671 0.594 0.370 0.763 0.318 0.343 0.583 0.840 0.157

terpene 120 0.744 0.908 0.492 0.869 0.815 0.367 0.824 0.870 0.663

alkaloid 39 0.785 0.434 0.590 0.820 0.222 0.051 0.607 0.533 0.154

https://doi.org/10.1371/journal.pcbi.1011162.t003
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truth labels against which we evaluate matched BiGCARP predictions. Table 4 shows unsuper-

vised BiGCARP performance in predicting the locations of clusters in these genomes, using the

same methods as on the 9 genomes test set. We also identify 199 possible start locations with

better scores than any of the clusters found by antiSMASH 6.1.1, which may be a fruitful start-

ing point for further investigation. All datasets and annotations used can be found on Zenodo.

Discussion

Biosynthetic gene clusters (BGCs) are a promising source of natural products, but are difficult

to discover, express, and characterize. Recent work in self-supervised deep learning has shown

promise for modeling DNA, RNA, proteins, and glycans. We develop Biosynthetic Gene Con-

volutional Autoencoding Representations of Proteins (BiGCARP), a masked language model

that learns representations of BGCs based on their Pfam domains, detects BGCs, and predicts

their product classes. To our knowledge, this is the first work to use Pfam domains as tokens

in a masked language model. We demonstrate that our model learns biologically-reasonable

representations of Pfam domains. Representing BGCs as Pfam domains was a compromise

between limiting the sequence length while having fine-grained sequence information. Models

on the level of amino acid residues or the nucleotide sequence may be able to resolve more

details at the cost of more computation. BiGCARP is a strong BGC detector even without see-

ing negative examples, and achieves state-of-the-art accuracy in product class prediction.

In presenting the first use of Pfam domains as tokens for a self-supervised language model,

this work opens opportunities for future method development and model refinement. For

example, our results indicated minimal benefit to using ESM-1b pre-trained Pfam embed-

dings. Future work could evaluate whether complementary methods for protein sequence pre-

training, such as the convolutional-based CARP model [32], confer greater benefit relative to

language models like ESM-1b. Additionally, sensitivity analyses could assess how the predic-

tive performance of BiGCARP and other competing methods change as a function of different

BGC representations, such as amino acid residues or nucleotide sequences. The BGC masked

language model introduced here additionally demonstrates promise for the expansion of BGC

science and engineering. In natural language processing and protein engineering, masked lan-

guage models are often fine-tuned on downstream tasks of interest.

For BGCs, these downstream tasks could include predicting their expression conditions or

the chemical structures of their products. Future work to assess the performance benefit of

fine-tuning BiGCARP will help determine the potential utility of BiGCARP for a variety of

downstream tasks. Without fine-tuning, our models are useful for detecting previously

unknown BGCs in microbial genomes and predicting BGC product classes.

In summary, we present BiGCARP, a self-supervised masked language model for the detec-

tion and characterization of biosynthetic gene clusters. The BiGCARP model described here

could be deployed for downstream tasks of interest, including chemical product structure

characterization and BGC mining. This study highlights the potential of self-supervised deep

learning as a framework for BGC discovery and characterization.

Table 4. Area under the receiver operating characteristic curve (AUROC) for BGC start locations and domains on

773 bacterial genomes released after antiSMASH 3.0 database.

BiGCARP

ESM-1b-finetuned ESM-1b-frozen random

Pfam domain 0.641 0.648 0.644

start 0.778 0.792 0.773

https://doi.org/10.1371/journal.pcbi.1011162.t004
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Materials and methods

In this section, we elaborate on details of our self-supervised deep learning framework for

detecting BGCs from bacterial genomes and classifying them into their natural product classes.

The workflow is summarized in Fig 1, which consists of curating data, pretraining Pfam

domain embeddings, training BiGCARP, and using BiGCARP to characterize BGCs.

Data

Pretraining dataset curation. To curate our pretraining dataset, we ran antiSMASH

(ANTIbiotics & Secondary Metabolite Analysis SHell) 2.0, a microbial genome mining tool for

BGC identification and analysis [8], on a database of 6,200 full bacterial genomes and 18,576

bacterial draft genomes [9]. This led to 142,821 total BGCs spanning 55 classes identified for

model development and evaluation. Our choice of representing BGCs as Pfam domains led to

a vocabulary size of 19,500 unique Pfam domains collected from Pfam database versions 31

and 32 [35]. We also remove sequences from the self-supervised training and validation sets

that contain substrings from or are substrings of sequences from the MIBiG, 9-genomes, and

6-genomes datasets from DeepBGC described below. This results in 127,294 BGCs in our pre-

training dataset prior to data splitting. All datasets used can be found on Zenodo. Future work

may include using newer antiSMASH databases for pretraining for improvement of

BiGCARP.

Pretraining data split for training and evaluation. Our training, validation, and test sets

were produced from an 80/10/10 split of the total set. Note that random splitting of data is

widely avoided in biological sequence modeling, since it leads to evaluation of overly simple

generalization. For example, in protein modeling, one instead uses sequence-identity based

splits as a proxy for evolutionary signal [38]. Proper splitting of BGCs is more complex, as evo-

lution of BGCs is poorly understood. To reduce redundancy between the data splits, we

ensured that no example in one set was a strict substring of an example in another set.

DeepBGC datasets for evaluating BGC detection and product classification. We evalu-

ated the performance of our models and compared it to the DeepBGC model by testing its abil-

ity to detect BGCs within bacterial genomes and to predict their corresponding product

classes. To do this, we utilized DeepBGC’s training set with 617 positive and 10128 negative

BGC samples to finetune our models [12]. We also used their 6-genomes and 9-genomes data-

sets to perform supervised domain classification tasks. For BGC product classification, we

used DeepBGC’s MIBiG dataset, which contains 1406 BGCs. Our mapping from antiSMASH

product types to common MIBiG compound classes can be found on Zenodo.

Unannotated bacterial genomes for evaluating BiGCARP performance. To demon-

strate the applicability of BiGCARP in advancing natural product discovery, we curated 773

unannotated bacterial genomes for BGC identification. We obtained all bacterial genomes

with an assembly level of ‘complete’, ‘chromosome’, or ‘scaffold’ in GenBank and FASTA

format released after 4 September 2020 available to download from the NCBI Datasets

Genome Data Package using the ncbi-genome-download tool, yielding 108,007 assemblies

that are unannotated in antiSMASH database version 3.0. We randomly chose 773 to

analyze.

We then used Prodigal [39] version 2.6.3 with default parameters to predict open reading

frames in all 773 bacterial genomes. Protein family domains were identified using HMMER

[40] version 3.3.2 hmmsearch and Pfam database version 32 [35]. Hmmsearch tabular output

was filtered using cath-resolve-hits [41] to obtain a final set of non-overlapping domain assign-

ments. The resulting list of Pfam domains was sorted by the gene and the domain start

location.
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Embeddings of Pfam domains with ESM-1b

We represent each Pfam as a vector. To do this, we take the first sequence in the alignment

for a Pfam, then use ESM-1b [14], a protein masked language model, to embed all amino

acids of this sequence. We averaged the embeddings over the full sequence, yielding a

representation vector of size 1280. By obtaining pretrained embeddings of Pfam domains

with ESM-1b, our model takes into account sequence details. To explore whether pre-

trained Pfam domain embeddings show improvement on the quality of Pfam domain rep-

resentations, we use three different initial Pfam embeddings for BiGCARP: ESM-1b

embeddings finetuned, ESM-1b embeddings frozen, and randomly initialized embeddings

updated throughout training. ESM-1b-finetuned and ESM-1b-frozen have the same ini-

tialization at the start of self-supervised training. All other model weights were randomly

initialized.

BiGCARP architecture and training

We train BiGCARP using the masked language model objective described in [33]. We prepend

a token representing the antiSMASH BGC class to each BGC sequence. Each sequence is then

corrupted by changing some tokens to a special mask token or another Pfam domain token,

and the model is tasked with reconstructing the original sequence. Specifically, 15% of tokens

from each sequence are randomly selected for supervision during each training step. For those

15% of tokens, 80% are replaced by the mask token, 10% are replaced by a randomly-chosen

Pfam domain token, and 10% remain unchanged. The model is trained to minimize the batch

average cross entropy loss between its predictions for the selected tokens and the true tokens

at those locations.

BiGCARP is a dilated 1D-convolutional neural network masked language model based on

ByteNet [34] and CARP [32]. The input is a sequence of Pfam domains represented by

1280-dimensional vectors. Model hyperparameters include the following: kernel width of 3,

maximum dilation of 128, 32 layers, and a hidden dimension of 256 for a total of 34 million

parameters. Training parameters include the following: batch size of 64, Adam optimizer with

a learning rate of 10−4, and mixed precision training using PyTorch [42] and NVIDIA Apex.

Each version of BiGCARP was trained on one 32GB NVIDIA V100 GPU for 300 epochs. The

epoch with the lowest validation loss was selected for downstream experiments. Model weights

and datasets are available on Zenodo; training code is available on our BiGCARP repository

and code to run pretrained BiGCARP models is available on our protein sequence models

repository on Github, with a command line manual for how to use the models. We do not

report replicates for results as that would require training each model from scratch multiple

times.

Evaluation on 9-genomes and 6-genomes

We use the intuition that the model should make more confident predictions when given BGC

sequences than non-BGC sequences to predict BGC start locations and whether each domain

is part of a BGC. For each bacterial genome, we prepend a mask token to each possible subse-

quence of 64 domains and pass the resulting sequences to BiGCARP. With the exception of

domains at the beginning and end of the genome, each domain is thus scored 64 times. For

each window, we calculate the entropy of the predictions for the prepended mask token (start

entropy), the entropy for each of the 64 domains in the window (domain entropy), and the

negative log-likelihood of each domain in the window (negative log-likelihood). We predict

whether a domain is the start of a BGC using the start entropy of the window for which it is

the first domain; positions with a lower start entropy are more likely to be BGC start locations.
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We predict whether each domain is part of a BGC using the average of the start entropies for

every window in which it appears and its domain entropy and negative log-likelihood within

each window in which it appears (a total of 64 × 3 values). Domains with lower scores are

more likely to be within a BGC.

Supervised training on DeepBGC training set

We follow the supervised training procedure described in DeepBGC. Using the positive BGC

domain sequences from MiBIG (version 1.4) and 10128 negative BGC domain sequences from

DeepBGC, at each epoch, we shuffle the sequences into a “genome” and then predict whether

each domain is part of a BGC. We fine-tune the self-supervised versions of BiGCARP as well

as a randomly-initialized version using the Adam optimizer and a learning rate of 10−4 with

early stopping using supervised results on 9-genomes.

Supporting information

S1 Fig. BiGCARP-ESM-1b-frozen Pfam embeddings demonstrate Pfam domain represen-

tation spaces are not explained by their underlying amino acid residue sequence. (a) Heat-

map of Euclidean distances between domain embeddings in the following Pfam clans:

NADP_Rossmann, P-loop NTPase, and MBB. (b) Average Euclidean distance between Pfam

domain embeddings in the aforementioned Pfam clans (c) Pairwise sequence alignment per-

cent identity matrix between Pfam clans.

(TIF)

S1 Table. Product classification results for individual BiGCARPs on MIBiG.

(XLSX)
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