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Abstract

Significant variations have been observed in viral copies generated during SARS-CoV-2

infections. However, the factors that impact viral copies and infection dynamics are not fully

understood, and may be inherently dependent upon different viral and host factors. Here,

we conducted virus whole genome sequencing and measured viral copies using RT-qPCR

from 9,902 SARS-CoV-2 infections over a 2-year period to examine the impact of virus

genetic variation on changes in viral copies adjusted for host age and vaccination status.

Using a genome-wide association study (GWAS) approach, we identified multiple single-

nucleotide polymorphisms (SNPs) corresponding to amino acid changes in the SARS-CoV-

2 genome associated with variations in viral copies. We further applied a marginal epistasis

test to detect interactions among SNPs and identified multiple pairs of substitutions located

in the spike gene that have non-linear effects on viral copies. We also analyzed the temporal

patterns and found that SNPs associated with increased viral copies were predominantly

observed in Delta and Omicron BA.2/BA.4/BA.5/XBB infections, whereas those associated

with decreased viral copies were only observed in infections with Omicron BA.1 variants.

Our work showcases how GWAS can be a useful tool for probing phenotypes related to

SNPs in viral genomes that are worth further exploration. We argue that this approach can

be used more broadly across pathogens to characterize emerging variants and monitor ther-

apeutic interventions.
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Author summary

Our study explores why viral load (copies measured by RT-qPCR) varies during SARS-

CoV-2 infections by analyzing viral mutations and measuring viral copies in 9,902 indi-

viduals over two years. We aimed to understand how genetic differences in SARS-CoV-2

influence viral copies, considering host age and vaccination status. Using a genome-wide

association study (GWAS), we identified several single-nucleotide polymorphisms (SNPs)

in the virus linked to variations in viral levels. Notably, interactions between certain SNPs

in the spike gene had non-linear effects on viral copies. Our analysis revealed that SNPs

associated with higher viral copies were common in Delta and Omicron BA.2/BA.4/BA.5/

XBB variants, while those linked to lower levels were mainly found in Omicron BA.1. This

research highlights GWAS as a powerful tool for exploring virus genetics and suggests it

can be broadly applied to monitor new variants of COVID-19 and other infectious

diseases.

Introduction

Continued SARS-CoV-2 transmission and evolution has propelled the COVID-19 pandemic.

Peak viral replication in the upper respiratory tract occurs during the first few days of infection

[1]. The viral load (or copies measured by RT-qPCR) in patient samples are valuable data to

understand infection dynamics, such as inferring the likelihood of disease transmission [2].

However, it is challenging to use viral load data, and the challenge often arises from significant

variations in viral load dynamics among sampled cases, which can be associated with 1) host

heterogeneity, e.g., age [3] and vaccination status [4–6]; 2) distinct inherent properties of virus

variants or sublineages [7], and 3) different sampling times [8]. For example, sampling during

the early stages of infection may yield higher viral loads compared to later stages after viral rep-

lication has reached its peak. Nevertheless, the relative importance of these factors influencing

viral load has not been completely explored [9,10].

Genome-wide association studies (GWAS) have emerged as a useful tool in the field of

genetics, providing an approach to unraveling the complex interplay between genetic varia-

tions and observable traits, including diseases and drug resistance, as reviewed in [11]. Several

studies have employed GWAS analysis to identify and investigate the association between

human genetic variations across different individuals and the severity of COVID-19, shedding

light on genetic variations that are related to severe infections [12–14]. However, few studies

have utilized a GWAS method to study associations between the viral genome and viral traits

[15–18]. The confluence of the extensive existing research on SARS-CoV-2 mutations and the

millions of infections that have been sequenced provides us the opportunity to evaluate the

application of GWAS for viral genomics. The hypothesis-free approach has the potential to

enhance our understanding of genetic determinants influencing viral fitness and evolution

and further inform effective public health strategies aimed at mitigating the spread and impact

of SARS-CoV-2.

In this work, we aim to investigate the impact of intrinsic viral genetic substitutions (i.e.,

single nucleotide polymorphisms [SNPs]) on the changes in viral copies, adjusted for host age

and vaccination status. For this, we apply a viral GWAS analysis to SARS-CoV-2 genomic

sequencing and standardized RT-qPCR data collected from the Yale New Haven Hospital

from February 2021 to March 2023. Using whole genome sequencing data on SARS-CoV-2

infections, along with relevant laboratory and patient metadata, we identify associations

between viral SNPs and viral copies for different variants of concern (VOCs). We then
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examine the temporal pattern of identified SNPs by constructing a phylogenetic tree, drawing

upon subsamples, and analyzing the time series of the fraction of SNPs occurring in the

sequences. This multifaceted analysis contributes to unraveling the complex dynamics of

SARS-CoV-2 infections, providing valuable insights into the underlying viral SNPs that influ-

ence viral copies in different VOCs.

Results

Viral copies vary in SARS-CoV-2 infections

To better understand how SARS-CoV-2 viral load varies in infected individuals, we analyzed

the viral copy data, along with associated host metadata (i.e., age and vaccination status), and

genome sequencing data from a cohort of patients tested at the Yale New Haven Hospital

(YNHH) located in Connecticut, US. We selected 9902 whole genome sequences with available

viral copy data generated from remnant SARS-CoV-2 diagnostic samples over a 2-year period,

from 03-Feb-2021 to 21-Mar-2023 (Fig 1A). The VOCs that we identified in our dataset during

the sampling period included Alpha (n = 809), Delta (n = 1278), Gamma (n = 36), BA.1

(n = 1818), BA.2 (n = 2432), BA.4 (n = 293), BA.5 (n = 1992), XBB (n = 698), and the pre-VOC

variant (named ‘Other’, n = 546). We conducted RT-qPCR using a standardized assay target-

ing the nucleocapsid (CDC ‘N1’ primers) for each sample to allow for cross-sample compari-

sons [19], except for a period during October 2021 when the PCR data were not generated.

Across all samples, the viral copies, expressed as log10(viral copies per milliliter (Genome

Equivalents/ml)), exhibited variations, ranging from 3.60 to 10.55, with a median value of 7.26

Fig 1. Genomic sequences of SARS-CoV-2 infections and associated viral copies from cross-sectional samples

collected in Connecticut, US. (A) The daily number of genomic sequences of SARS-CoV-2 VOCs from February 2021

to March 2023. (B) The summary of viral copies of all samples, expressed as log10(viral copies per milliliter). (C) The

summary of viral copies aggregated by month. The data gap in October 2021 is because we were unable to conduct

PCR to obtain viral copies during this time.

https://doi.org/10.1371/journal.pcbi.1012469.g001
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(Fig 1B). The variations in viral copies could be attributed either to the introduction and/or

replacement of different VOCs, each with its own epidemic curve, or to the stochasticity from

the sampling process. To reduce stochastic effects, we aggregated the viral copies by month

and still observed large variations in the viral copies across the months, albeit with no consis-

tent trend (Fig 1C). Notably, we observed the lowest median value of viral copies

(median = 6.49) in February 2022, during which 96.3% of the sampled sequences tested posi-

tive for BA.1 infections. By contrast, we observed the highest median value of viral copies

(median = 7.70) in June 2022, during which the sampled sequences tested positive for BA.2

(64.9%), BA.4 (6%), or BA.5 (29.1%) infections. Taken together, we showed a wide range of

viral copies in the sampled SARS-CoV-2 infections with different VOCs, utilizing data from

genomic surveillance and standardized RT-qPCR tests.

Viral copies correlate with age and variants, but not with vaccination status

Having uncovered a large variability in the observed viral copies from the samples, we next

assessed the factors associated with these changes. To do this, we first summarized and com-

pared viral copies in various age groups (Fig 2A). A positive correlation has been previously

reported between age and SARS-CoV-2 viral copies, showing that younger age groups had

Fig 2. Viral copies by category and regression analysis results. Comparison of viral copies stratified by (A) age

groups, (B) vaccination statuses, (C) variant of concerns. (D) Association of age, vaccination status, and VOCs with

viral copies, expressed as log10(viral copies per milliliter (Genome Equivalents/ml)). The reference groups (in gray) are

Age<18 years old, 0 doses of vaccination, and the Other variant, respectively. The positive coefficients indicate the

covariate is associated with higher viral copies value compared to the reference group, and vice versa. 0 Vax, 1 Vax, 2

Vax, 2 Vax 1 booster, and 2 vax 2 boosters denote vaccination statuses of 0 doses, 1 dose, 2 doses, 2 doses, and 1

booster, and 2 doses and 2 boosters, respectively, corresponding to the labels in (B). Results are shown as means with

95% confidence intervals. *** p< 0.001.

https://doi.org/10.1371/journal.pcbi.1012469.g002
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lower viral copies independent of gender and/or symptom duration [20]. We observed a simi-

lar result in our dataset and found that the oldest age group (i.e.,>70 years old) had the highest

viral copies compared with other age groups (mean = 7.47, 95% confidence interval (CI):

[5.12, 9.49], p< 0.001, Wilcoxon signed-rank test). For the effect of vaccination on viral cop-

ies, some studies have demonstrated that although vaccination reduced the risk of infections

with the Delta variant, no significant difference in peak viral copies was found between fully

vaccinated and unvaccinated individuals [4,5,21]. In contrast, other studies have shown that

vaccination reduced viral copies in BA.1 infections among boosted individuals compared to

unvaccinated ones [6]. These results suggest the effect of vaccination on viral copies may

depend on the characteristics of the infecting SARS-CoV-2 variant. We compared viral copies

among groups with different vaccination statuses to assess the impact of vaccination on viral

copies (Fig 2B), and no statistically significant differences were detected between the groups in

our data (p> 0.05, Wilcoxon signed-rank test). Finally, we compared viral copies stratified by

variant category (Fig 2C). Combining samples collected from all age and vaccination status

groups for each variant, we found that the overall mean values of viral copies were lowest for

infections with BA.1 (mean = 6.83, 95% CI: [4.87, 8.87], p< 0.001, Wilcoxon signed-rank test)

compared to infections with other all non-BA.1 variants.

Since several factors may simultaneously impact the SARS-CoV-2 viral load, next, we

sought to quantify the combined impact of age, vaccination status, and VOCs on the observed

viral copies. To achieve this, we fitted a multivariate linear regression model, with viral copies

as the outcome variable and age, vaccination, and VOCs as covariates (Fig 2D). We found that

the older age group (i.e., age>70 years old) had a positive association with viral copies

(mean = 0.17, 95% CI: [0.09, 0.25], p< 0.001) compared with the reference group (i.e., age

<18 years old). We also found that vaccination status was not associated with viral copies (i.e.,

95% CIs of the vaccination coefficients span 0, p> 0.05). Notably, we showed that infections

with BA.1 were associated with reduced viral copies, with a mean effect size of -0.34 (95% CI:

[-0.44, -0.24], p< 0.001) in the same age group and vaccination status, compared to the Other

variant. We also showed that infections with BA.2 (mean = 0.19, 95% CI: [0.09, 0.28],

p< 0.001), BA.4, or BA.5 (mean = 0.17, 95% CI: [0.07, 0.26], p< 0.001) were associated with

increased viral copies. Among them, infections with BA.4 were associated with the largest posi-

tive effect size (mean = 0.27, 95% CI: [0.12, 0.41], p< 0.001). Our findings demonstrated that

variations in viral copies were associated with infections caused by different SARS-CoV-2 vari-

ants and the older age group. This implies that intrinsic factors of the viruses, such as genetic

mutations among distinct VOCs, are key determinants impacting viral copies.

Viral GWAS reveals SARS-CoV-2 SNPs associated with viral copies

Having demonstrated that changes in SARS-CoV-2 viral copies are associated with infections

caused by different viral variants or strains, especially Omicron BA.1/BA.2/BA.4/BA.5 variants

(Fig 2D), we then sought to identify potential genetic mutations—specifically, SNPs—that con-

tributed to these changes in viral copies. For this, we performed a GWAS analysis using high-

quality genome sequences (i.e., genome coverage > 95%). We conducted whole-genome

sequencing on the 9902 SARS-CoV-2 positive specimens collected from February 2021 to

March 2023. Firstly, using Wuhan-Hu-1 (GenBank MN908937.3) as the reference genome, we

identified 10,697 SNPs for further testing associated with viral copies as covariates. We then

checked for the population structure of the 9902 genome sequences using a multidimensional

scaling (MDS) method [22] (S1 Fig). We observed that Delta was an outgroup to other pre-

Omicron variants (i.e., pre-VOC variant (Other), Alpha, and Gamma), and BA.1 was an out-

group to the BA.2/BA.4/BA.5/XBB cluster. In our model, we included the inferred four clusters
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based on the MDS-computed distance to capture the viral population structure. Clusters were

defined using a k-means clustering method (S1 Fig). The host ages and vaccination status were

also included in the model as covariates.

Using the linear regression model on viral copies for each SNP, adjusted for viral popula-

tion structure and host factors, we identified 31 SNPs exceeding the permuted threshold for

genome-wide significance (p = 4.67×10−6, dashed line, Fig 3A). The threshold value was calcu-

lated as 0.05 divided by 10,697 SNPs [23]. We found that the observed distribution of p-values

closely matches the expected distribution under the null hypothesis of no association (S2A

Fig). To ascertain whether those SNPs have a negative or positive impact on viral copies and

evaluate their effect size, we extracted the coefficients (β) of the SNPs with p<1×10−10 and

their standard deviations (σ) from the regression model (dashed box, Fig 3B). We then anno-

tated the SNPs to identify the associated amino acids, and among them, 14 SNPs were non-

synonymous (i.e., changed the amino acid; Fig 3C). We found that a non-synonymous change

N:R203M, located on the N gene, had the most significant association with increased viral cop-

ies (p = 2.68×10−22, β = 1.65, σ = 0.16). By contrast, the amino acid change most strongly asso-

ciated with a negative effect on viral copies was ORF1ab:L5086I (p = 9.20×10−20, β = -1.20, σ =

0.13). We further conducted a marginal epistasis test [24–26] to detect the epistatic effects of

SNPs on viral copies. We discovered multiple pairs of SNPs that exhibit positive epistatic

effects on viral copies, with most interactions occurring in the S gene (S3 Fig).

Fig 3. GWAS analysis identifies several single nucleotide polymorphisms (SNPs) that are associated with the

changes in viral copies. (A) Genome-wide association results of the impact of identified SNPs on viral copies during

SARS-CoV-2 infection. The dashed line indicates the permuted threshold for genome-wide significance p = 4.67×10−6

(0.05/10697 SNPs). Significant SNPs are shown with solid colors. (B) SNPs (with p<1×10−10) that have positive (blue)

or negative (red) effects on viral copies. (C) The corresponding synonymous (triangles) and non-synonymous (circles)

amino acid changes that associate with increased or decreased viral copies. Data shown as means with 95% confidence

intervals. The estimated effective sizes and associated standard deviations are given S1 Table.

https://doi.org/10.1371/journal.pcbi.1012469.g003
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To assess the impact of adjusting for the population structure of the SARS-CoV-2 strains

using the MDS components on the regression results, we conducted a sensitivity analysis on

the genome sequences using the inferred MDS components from the pairwise SNP distance

matrix of SARS-CoV-2 sequences as covariates. By doing this, we identified 113 SNPs exceed-

ing the permuted threshold (S4 Fig). The observed distribution of p-values also closely

matched the expected distribution under the null hypothesis of no association (S2B Fig). The

results may be more likely to reflect the SNPs that influence the viral copies dependent on line-

age. We also examined the association between viral copies and SNPs after adjusting for the

population structure based on the VOCs themselves, which broadly correspond to the identi-

fied sequence clusters. We showed that only a few SNPs were found (S5–S8 Figs), mostly

within the Omicron BA.2/BA.4/BA.5/XBB cluster (S8 Fig).

The impact of amino acid changes on viral copies is dependent on the

variant

Having identified the 14 non-synonymous SNPs with statistically significant effects on viral

copies in our primary analysis, we next sought to understand the temporal patterns of the

emergence of these amino acid changes (Fig 4). To investigate the clustering of these SNPs, we

Fig 4. The temporal dynamics of non-synonymous amino acid changes in the ORF1ab gene (P3395H, I4915T and

L5086I), S gene (T19I, G252V, L452Q, Q498R, N679K, S704L, N856K, Q954H, N969K and L981F), and N gene

(R203M) associated with changes in viral copies. The results are based on the multivariate regression analysis using

the sequence clusters (i.e., a categorical variable) inferred from the MDS components. (A) The phylogenetic tree

estimated from a representative set of 996 genome sequences showing variant assignments and the locations of amino

acid changes that increase (blue) or decrease (red) viral copies. (B) The temporal dynamics of the SNPs from February

2021 to March 2023. The transparency of the color corresponds to the mutation fraction in the daily sequence count:

transparent color indicates low fractions, and opaque color indicates high fractions. The temporal dynamics of the

SNPs, using MDS-inferred distance as a population control, are shown in S9–S11 Figs.

https://doi.org/10.1371/journal.pcbi.1012469.g004
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randomly sampled approximately 120 genome sequences from each VOC category (only 36

sequences were available for Gamma in our dataset) and generated a phylogenetic tree drawing

upon the subsamples (Fig 4A). We found a clear pattern in how these mutations emerged by

VOC (Fig 4A heatmap). We found that all amino acid changes associated with a positive effect

on viral copies were found in Delta and Omicron BA.2/BA.4/BA.5/XBB infections. Often,

more than one amino acid change was observed in each sampled sequence, suggesting genetic

linkage between these SNPs, as also shown in the epistasis test (S3 Fig), such as S:Q954H and

N969K. In particular, we identified that the amino acid changes S:L452Q (p = 3.91×10−25, β =

0.34, σ = 0.03) and S704L (p = 1.35×10−24, β = 0.34, σ = 0.03) associated with a positive effect

on viral copies were typically observed in combination with BA.2 infections—specifically, line-

age BA.2.12.1. We also observed that the amino acid changes with negative effects on viral cop-

ies (ORF1ab:L5086I, S:N856K and L981F) were only associated with BA.1 infections.

To explore the temporal dynamics of these amino acid changes, we calculated the fraction

of SNPs occurring in the sequences for each day, thereby accounting for the number of intro-

ductions to the population (Fig 4B). We observed most SNPs with a positive impact on viral

copies emerging in sequences sampled from February 2022, when BA.2 was first detected in

Connecticut. These SNPs were consistently observed in almost every sequence thereafter. By

contrast, we found that the other two amino acid changes (S:L452Q and S704L) that had a pos-

itive effect on viral copies were only in the samples from BA.2 infections and did not arise

again in sublineages of BA.4 or BA.5. S:G252V was associated with higher viral copies; how-

ever, we found that the SNP only appeared in a few sequences associated with XBB infections.

Notably, the N:R203M mutation was only associated with Delta infections. For the SNPs

(ORF1ab:L5086I, S:N856K and L981F) that had a negative association with viral copies, we

observed that they were present in samples associated with BA.1 infections and did not persist

when BA.1 was replaced by BA.2.

Discussion

We conducted a GWAS analysis on 9,902 high-quality SARS-CoV-2 genome sequences gener-

ated from two years of genomic surveillance in Connecticut, US to identify and evaluate SNPs

that were associated with variations in viral copies during infections. Using a GWAS approach,

we were able to identify and examine virus-related factors that were associated with the

observed variations in viral copies independent of host factors. This was achieved by combin-

ing data from a large cohort of individuals infected with different VOCs and employing a

regression model for viral copies that accounted for virus-level factors (i.e., specific SNPs and

genetic background), adjusted for individual factors (i.e., age and vaccination status). We iden-

tified several SNPs corresponding to non-synonymous amino acid changes in the SARS-CoV-

2 genome that were individually or jointly associated with the variations in viral copies. In par-

ticular, temporal patterns of the SNPs revealed that SNPs associated with increased viral copies

were predominantly observed in Delta and Omicron BA.2/BA.4/BA.5/XBB infections, whereas

those associated with decreased viral copies were mostly observed in infections with Omicron

BA.1 variants.

Using a GWAS approach, we successfully identified a subset of variant-defining amino acid

changes in Delta and Omicron variants (S12 Fig). Note that we did not detect any substitutions

in the Alpha and Gamma variants (likely due to the low sample size for Gamma). We also

identified SNPs that did not define any major variant category, including S:L452Q and S704L

that were specifically associated with BA.2.12.1, a sublineage of BA.2 that briefly dominated

during the pandemic (i.e., dominated mainly in the US between March and May 2022). This

highlights the application of GWAS for identifying SNPs associated with important
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phenotypic effects without requiring a set of lineage-defining mutations to be defined a priori.

Nevertheless, there are several reasons why we only detected a subset of the SNPs that defined

different VOCs. Firstly, SNPs with small effect sizes may not be detected due to the stringent

statistical significance thresholds applied in GWAS. Secondly, lineage-defining SNPs that are

in low linkage disequilibrium with the causal mutations may not be detected [27], even if they

may be functionally relevant. Our results showcase how GWAS can help to narrow the focus

of SNPs associated with specific phenotypes, generating hypotheses for further investigation.

A key result from our analysis is that SNPs associated with viral copies did not exhibit the

same temporal dynamics, even though they could have similar (either positive or negative)

effects on viral copies, suggesting they may have independent effects on viral copies. Some

amino acid changes, for example, ORF1ab:I4915T (positive effects), were only present in sam-

ples with BA.2 infections and disappeared when new Omicron variants emerged. Other SNPs

(e.g., S:T19R), while also associated with higher viral copies, were observed and persisted in all

BA.2/BA.4/BA.5/XBB infections. The distinct temporal pattern of SNPs, dependent on VOCs,

may help explain the different fitness levels (e.g., intrinsic transmissibility or immune escape)

of each variant [28,29]. Notably, we found three SNPs, ORF1ab:L5086I, S:N856K and L981F,

were associated with decreased viral copies in BA.1 infections. The negative impact on viral

copies should be interpreted with caution. Although the possibility that these SNPs have a

direct impact on reducing viral copies cannot be ruled out, it is also likely that the estimated

negative effects are due to a synthetic association with other SNPs. Further study may be

required to disentangle the direct effects of these SNPs from the confounding influences of

other genetic variations and to confirm their functional impact on viral copies.

In this study, we employed a series of single SNP regression models to identify the underly-

ing SNPs associated with the changes in viral copies without accounting for potential interac-

tions between SNPs. We noted that several synonymous SNPs located in the ORF1ab gene

were identified to have an impact on viral copies. The synonymous SNPs were likely linked to

non-synonymous SNPs that were under positive selection. In such cases, the synonymous

SNPs can be carried along with the non-synonymous SNPs, resulting in their significance in

the GWAS analysis, as shown in the subsequent epistasis test (S3 Fig). The epistasis test pro-

vided evidence that the synonymous mutations identified through GWAS analysis are likely

the result of synthetic associations with other non-synonymous mutations. Nevertheless, the

method provided an initial set of SNPs that are worth further exploration, pinpointing impor-

tant mutations associated with viral copies and providing valuable insights into the overall

genetic landscape of the viral population. The method, thus, represented an important first

step towards understanding detailed epistatic effects among these mutations on viral copies. A

paired or higher-order SNP regression study could be conducted as a subsequent step to test

potential interactions or joint effects among different SNPs.

There are limitations to our study. First, we assumed that the distribution of times between

infection and sample collection was similar through time and across variants as these data

were not available. Given our samples were taken frequently over a 2-year period, we do not

anticipate that this assumption will qualitatively impact our results. Second, our study primar-

ily focuses on the genetic variants in VOCs, neglecting other factors such as host immune

responses or environmental influences, partially captured by the host-associated covariates,

including age and vaccination status in this study, that may also contribute to the changes in

viral copies. Further study will be needed to address the impact of these factors on viral copies,

for example, genome-to-genome analysis to reveal the impact of host-viral genetic interactions

in SARS-CoV-2 infections [18,30]. Third, our data were obtained from a specific geographic

region, whose population diversity may not necessarily be similar to other settings; therefore,

extrapolating these findings to a broader population may require caution. Additionally,
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focusing solely on consensus genomic changes in the analysis could overlook the genetic diver-

sity within the sample, which may also influence variations in viral load. Despite these con-

straints, our study highlights the importance of sustained genomic surveillance and the need

for comprehensive analyses to understand the nuanced impact of specific genetic variations on

viral copies at the within-host level, and its implications for viral transmissibility and immune

escape at the population level. Further work and collaborative efforts are essential to elucidate

the complex interplay between viral genetics, host factors, and the dynamics of transmission

associated with emerging variants. Such studies could inform predictive early warning public

health systems regarding the emergence of potentially highly transmissible viral strains based

on their constellation of mutations.

Recently, Duesterwald et al. [10] used genome sequence data and a machine-learning

approach to predict cycle threshold (Ct) values of SARS-CoV-2 infections based on the k-

mers. Similar to our findings, they suggested that S:L452 and P681 were hallmarks of VOCs,

implying impacts on the observed Ct values in clinical samples. Although the machine-learn-

ing approach may capture broader patterns and interactions within the genome on Ct values,

they lack interpretability compared to regression models. For example, regression-based mod-

els could offer insights into the direct association between specific genetic variants and viral

copies. In addition, regression-based models may perform well even with limited sample sizes

[16], provided that the assumptions of the model are met and the predictors are informative,

whereas using machine-learning methods with small sample sizes can be challenging. How-

ever, the viral GWAS method may not be appropriate in situations where there is insufficient

genetic diversity in the viral population under study, as this can limit the power to detect

meaningful associations between mutations and viral traits. Additionally, it may not be suit-

able when the phenotypic traits of interest are not well-defined or accurately measured.

With the availability of high-quality whole-genome sequences for SARS-CoV-2, we demon-

strated that GWAS analysis of the viral genome can identify SNPs that associate with positive

or negative impacts on viral copies in VOCs, revealing important biological insights and

enhancing our understanding of within-host viral dynamics. We argue that the application of

GWAS analyses to study viral genomes provides a particularly tractable tool to identify poten-

tial SNPs of interest for further evaluation across different viral pathogens. It is particularly

useful to understand the genetic basis of viral virulence, transmission, resistance to antiviral

treatments, and host-virus interactions for several reasons. First, the small genome size of

viruses and high evolutionary rates make it easier to perform comprehensive genome-wide

scans for SNPs and to experimentally test the impacts of SNPs on specific traits. Second, signif-

icant phenotypic variations (e.g., viral loads and antibody responses) are often observed in

viral infections, despite limited changes in the viral genome. GWAS can help to identify SNPs

that correlate with these phenotypic variations, providing insights into the genetic basis of

these traits. Third, the increasing accessibility to sequence viral genomes makes it possible to

perform GWAS on rich datasets, enabling in-depth analysis of the temporal dynamics of viral

evolution. Together, the applicability of GWAS analyses to study viral genomes can provide a

new approach for exploring the intricate interplay between genetic mutations and phenotypes,

informing strategies for managing and mitigating the impact of emerging viral variants, and

contributing to the development of potential therapeutic interventions.

Materials & methods

Ethics statement

The Institutional Review Board from the Yale University Human Research Protection Pro-

gram determined that the RT-qPCR testing and sequencing of de-identified remnant COVID-
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19 clinical samples obtained from clinical partners conducted in this study is not research

involving human subjects (IRB Protocol ID: 2000028599).

Clinical sample collection and measurement of viral copies by RT-qPCR

SARS-CoV-2 positive samples (nasal swabs in viral transport media) were collected through

the Yale New Haven Hospital (YNHH) System as a part of routine inpatient and outpatient

testing and sent to the Yale SARS-CoV-2 Genomic Surveillance Initiative. Using the MagMAX

viral/pathogen nucleic acid isolation kit, nucleic acid was extracted from 300μl of each clinical

sample and eluted into 75μl of elution buffer. Extracted nucleic acid was then used as template

for a “research use only” (RUO) RT-qPCR assay [19] to test for presence of SARS-CoV-2

RNA. Ct values from the nucleocapsid target (CDC-N1 primer-probe set [31]) were used to

derive viral copy numbers using a previously determined standard curve for this primer set

[32]. A positive RNA control with defined viral copy number (1000/μl) was used to standardize

results across individual runs.

Whole genome sequencing

Libraries were prepared for sequencing using the Illumina COVIDSeq Test (RUO version)

and quantified using the Qubit High Sensitivity dsDNA kit. Negative controls were included

for RNA extraction, cDNA synthesis, and amplicon generation. Prepared libraries were

sequenced at the Yale Center for Genomic Analysis on the Illumina NovaSeq with a 2x150

approach and at least 1 million reads per sample.

Reads were then aligned to the Wuhan-Hu-1 reference genome (GenBank MN908937.3)

using BWA-MEM v.0.7.15 [33]. Adaptor sequences were then trimmed, primer sequences

masked, and consensus genomes called (simple majority >60% frequency) using iVar v1.3.133

[34] and SAMtools v1.11 [35]. When<20 reads were present at a site an ambiguous “N” was

used, with negative controls consisting of�99% Ns. The Pangolin lineage assignment tool [36]

was used for assigning viral lineages.

Clinical metadata

We obtained patient metadata and vaccination records from the YNHH system and the Center

for Outcomes Research and Evaluation (CORE) and matched these records to sequencing data

through unique sample identifiers. Duplicate patient records or those with missing or incon-

sistent metadata and vaccination date were removed from the GWAS analysis. We also

removed patient records with persistent infections (>28 days since first positive test).

We determined vaccination status at time of infection by comparing the sample collection

date to the patient’s vaccination record dates. We categorized vaccine statuses based on the

number of vaccine doses received at least 14 days before the collection date. Patient vaccina-

tion statuses at the time of infection were categorized as follows: non-vaccine, one-dose vac-

cine, two-dose vaccine, two-dose vaccine with one booster, or two-dose vaccine with two

boosters. We calculated the age of each patient as the difference between the date of birth and

the sampling date.

Single nucleotide polymorphisms

To identify single nucleotide polymorphisms (SNPs), we first aligned the 9902 genome

sequences using nextalign (v3.2.1) [37] with the reference genome of the Wuhan-Hu-1

genome (GenBank accession: MN908937.3). Then, SNPs were identified using snp-sites
(v2.4.1) [38], with the reference genome of the Wuhan-Hu-1 genome (GenBank accession:
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MN908937.3). We also normalized the SNPs in the generated VCF file, such that multiallelic

SNPs were separated into different rows. Normalizing the SNPs ensured that each SNP was

one-hot encoded and analyzed separately. Note that we did not include ambiguous SNPs, dele-

tions and insertions in our GWAS analysis. We used vcf-annotator (v0.7) to annotate SNPs to

corresponding amino acid changes.

Multidimensional scaling and population control

To reveal the underlying structure of the 9902 genome sequences. We first used snp-dists
(v0.7.0) [39] to convert the aligned sequences (a FASTA alignment) to a SNP distance matrix.

We then applied a multidimensional scaling (MDS) method [22] to transform the SNP dis-

tance matrix into a geometric configuration while preserving the original pairwise relation-

ships. The scaling was conducted using cmdscale function in an R package stats (v3.6.2). We

set the maximal dimensional parameter k = 2.

To measure the goodness of the transformation, we calculated the distance between the

original genome sequencing data and compared it with the new distances determined by

MDS. This involved arranging the two matrices of distances into two columns and computing

the correlation coefficient (i.e., r) between them. Finally, we used r2 to measure the proportion

of variance in the original distance matrix explained by the new computed distance matrix.

To determine the clusters (i.e., categorical variables) from MDS, we applied the k-means

clustering method using the kmeans function implemented in R statistical software (v4.0.2).

We set the number of centroids k = 4.

Testing for associations between viral copies and SNPs

In this work, we conducted a series of single SNP regression analyses to test for associations

between viral copies and SNPs, adjusted for host ages, vaccination status and viral population.

The linear regression model is written as follows:

Y � aW þ biSNPi þ e; ð1Þ

where Y is a vector of normalized log10-transformed viral copies, W is a matrix of covariates,

including age (a categorical variable with four age groups of “<18”, “18–49”, “50–69”, and

“>70” years old), vaccination status (a categorical variable with vaccination statuses of “0

doses”, “1 dose”, “2 doses”, “2 doses and 1 booster”, “2 doses and 2 boosters”), a population

control variable for different viral variants (a categorical variable with cluster numbers of “1”,

“2”, “3” and “4”, see S1 Fig for detailed clusters), and an intercept, and α is a vector that corre-

sponds to coefficients of the covariates. In particular, SNPi is a vector of genotype values for all

samples at each SNP, i. It is a binary variable: 0 represents the SNP is not present in the

genome sequence, whereas 1 represents its presence. βi is the effective size of each identified

SNP, i. We also conducted a sensitivity analysis including two terms ξ1d1, ξ2d2 as covariates in

the model for population control. The vectors d1, d2 represent the two dimensions computed

by MDS, and ξ1, ξ2 are the coefficients of the dimension covariates. The random effect of resid-

ual errors is presented here by e, which is assumed to follow a normal distribution with a mean

of 0 and a standard deviation of σe.

Marginal epistasis test

We applied the marginal epistasis test method to explore the interactions between SNPs on

viral copies, using an R package mvMAPIT (v.2.0.3) [24–26]. This method maps SNPs with

non-zero marginal epistatic effects—the combined pairwise interaction effects between a given
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SNP and all other SNPs—identifying candidate variants involved in epistasis without needing

to identify the exact partners with which the variants interact.

The method works by examining one variant at a time. For the j-th variant, the following

linear model is applied,

y ¼Wγ þ xjbj þmj þ g j þ ε; ε � MVNð0; t2IÞ; ð2Þ

where y is an n-vector of phenotypes (i.e., viral copies) for n individual samples; W is a matrix

of covariates including an intercept term with effects γ; xj is an n-vector for the j-th variant

(i.e., SNP) that is focus of the model; βj is the corresponding additive effect size for the j-th var-

iant; mj ¼
P

l6¼jxlbl is the combined additive effects from all other variants, and effectively rep-

resents the additive effect of the j-th SNP under the polygenic background of all other SNPs;

and g j ¼
P

l6¼jðxj � xlÞal is the summation of all pairwise interaction effects between the j-th

SNP and all other SNPs. Lastly, ε is an n-dimensional vector of residual errors where MVN

denotes a multivariate normal distribution, τ2 is a variance term, and I denotes an identity

matrix.

To ensure model identifiability, MAPIT assumes that the additive and interaction effect

sizes follow univariate normal distributions where bl � Nð0;o2=ðJ � 1ÞÞ and al �

Nð0; s2=ðJ � 1ÞÞ where J denotes the total number of variants in the dataset. This key assump-

tion on the regression coefficients means that the two random effects can also be expressed

probabilistically as: (i) mj � MVNð0;o2K jÞ where K j ¼ X� jX
⊺
� j=ðJ � 1Þ is an additive genetic

relatedness matrix that is computed using all genotypes other than the j-th SNP; and (ii) g j �

MVNð0; s2GjÞ where Gj = DjKjDj is a non-additive relatedness matrix computed based on all

pairwise interaction terms involving the j-th SNP and Dj = diag(xj) denotes a diagonal matrix

with the j-th genotype as its only nonzero elements.

The key takeaway from MAPIT is that the variance component σ2 represents a measure of

the marginal epistatic effect for each SNP in the data. Therefore, to identify variants that have

significant nonzero marginal epistatic effects, the model assesses the null hypothesis H0: σ2 = 0

for each variant in the data set. The mvMAPIT software uses a method of moments algorithm

to estimate model parameters and then uses a calibrated two-sided z-score (i.e., normal) test to

derive p-values.

Phylogenetic tree construction and comparison to variant-defining

substitutions

We employed iq-tree (v2.2.2.6) [40] of a representative set using 996 of our 9902 genome

sequences for tree construction, using Wuhan-Hu-1 (GenBank MN908937.3) as the reference

genome. We specified the HKY substitution model and set the number of bootstrap replicates

to 1,000. To visualize the phylogenetic tree, we used the ggtree (v1.4.11) implemented in the R

statistical software (v4.0.2). The variant-defining amino acid changes were defined as those

mutations with>75% prevalence in at least one lineage, as estimated on outbreak.info website

[41]. Note that we did not include deletions in variant-defining substitutions.

Supporting information

S1 Fig. Results of multidimensional scaling. The population structure of the 9902 genome

sequences using a multidimensional scaling (MDS) method. Clusters are defined using a k-

means clustering method, as demonstrated on the bottom right corner.

(TIF)
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S2 Fig. Q-Q plots of GWAS p-values. Q-Q plots (quantile-quantile plots) showing the p-val-

ues from GWAS analysis using (A) two MDS-computed components, or (B) MDS-inferred

four clusters as covariates in the regression model.

(TIF)

S3 Fig. Marginal epistasis tests identify single nucleotide polymorphisms (SNPs) that have

epistatic interactions with others and are associated with the changes in viral copies. (A)

Marginal epistasis test results of the SNPs (annotated as amino acid changes) that have mar-

ginal epistatic effects on viral copies. The dashed line indicates the permuted threshold for

genome-wide significance p = 0.05/171 = 2.74×10−4. Significant mutations are shown with

solid colors. (B) The p-values and (C) the effect size of pairwise interaction tests among the sig-

nificant mutations.

(TIF)

S4 Fig. GWAS analysis identifies several single nucleotide polymorphisms (SNPs) that are

associated with the changes in viral copies. (A) Genome-wide association results of the

impact of identified SNPs on viral copies during SARS-CoV-2 infection. The dashed line indi-

cates the permuted threshold for genome-wide significance p = 4.67×10−6. Significant SNPs

are shown with solid colors. (B) SNPs (with p<1×10−10) that have positive (blue) or negative

(red) effects on viral copies. (C) The corresponding synonymous (triangles) and non-synony-

mous (circles) amino acid changes that associate with increased or decreased viral copies. Data

is shown as means with 95% confidence intervals. The estimated effective sizes and associated

standard deviations are given in S1 Table. A Q-Q plot showing the observed distribution of p-

value and the expected distribution is given in S2 Fig.

(TIF)

S5 Fig. GWAS analysis using only Cluster 1 data (shown in S1 Fig). (A) Genome-wide asso-

ciation results of the impact of identified SNPs on viral copies during SARS-CoV-2 infection.

The dashed line indicates the permuted threshold for genome-wide significance p = 4.03×10−5

(0.05/1242 SNPs). Significant SNPs are shown with solid colors. (B) SNPs (with p<1×10−10)

that have positive (blue) or negative (red) effects on viral copies. (C) The corresponding synon-

ymous (triangles) amino acid changes that associate with increased or decreased viral copies.

Data shown as means with 95% confidence intervals.

(TIF)

S6 Fig. GWAS analysis using Cluster 2 data (shown in S1 Fig). (A) Genome-wide association

results of the impact of identified SNPs on viral copies during SARS-CoV-2 infection. The

dashed line indicates the permuted threshold for genome-wide significance p = 3.68×10−-

5(0.05/1357 SNPs). Significant SNPs are shown with solid colors. (B) SNPs (with p<1×10−10)

that have positive (blue) or negative (red) effects on viral copies. (C) The corresponding synon-

ymous (triangles) amino acid changes that associate with increased or decreased viral copies.

Data shown as means with 95% confidence intervals.

(TIF)

S7 Fig. GWAS analysis using Cluster 3 data (shown in S1 Fig). (A) Genome-wide association

results of the impact of identified SNPs on viral copies during SARS-CoV-2 infection. The

dashed line indicates the permuted threshold for genome-wide significance p = 2.80×10−-

5(0.05/1784 SNPs). Significant SNPs are shown with solid colors. (B) SNPs (with p<1×10−10)

that have positive (blue) or negative (red) effects on viral copies. (C) The corresponding non-

synonymous (circles) amino acid changes that associate with increased or decreased viral
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copies. Data shown as means with 95% confidence intervals.

(TIF)

S8 Fig. GWAS analysis using Cluster 4 data (shown in S1 Fig). (A) Genome-wide association

results of the impact of identified SNPs on viral copies during SARS-CoV-2 infection. The

dashed line indicates the permuted threshold for genome-wide significance p = 7.91×10−6

(0.05/6314 SNPs). Significant SNPs are shown with solid colors. (B) SNPs (with p<1×10−10)

that have positive (blue) or negative (red) effects on viral copies. (C) The corresponding synon-

ymous (triangles) and non-synonymous (circles) amino acid changes that associate with

increased or decreased viral copies. Data shown as means with 95% confidence intervals.

(TIF)

S9 Fig. The temporal dynamics of amino acid changes in the S gene associated with

changes in viral copies. The results are based on the multivariate regression analysis using the

two MDS components as covariates. (A) The phylogenetic tree estimated from a representative

set of 996 genome sequences showing variant assignments and the locations of amino acid

changes that increase (blue) or decrease (red) viral copies. (B) The temporal dynamics of the

SNPs from February 2021 to March 2023. The transparency of the color corresponds to the

mutation fraction in the daily sequence count: transparent color indicates low fractions, and

opaque color indicates high fractions.

(TIF)

S10 Fig. The temporal dynamics of amino acid changes in the ORF1ab gene associated

with changes in viral copies. The results are based on the multivariate regression analysis

using the two MDS components as covariates. (A) The phylogenetic tree estimated from a rep-

resentative set of 996 genome sequences showing variant assignments and the locations of

amino acid changes that increase (blue) or decrease (red) viral copies. (B) The temporal

dynamics of the SNPs from February 2021 to March 2023. The transparency of the color corre-

sponds to the mutation fraction in the daily sequence count: transparent color indicates low

fractions, and opaque color indicates high fractions.

(TIF)

S11 Fig. The temporal dynamics of amino acid changes in the ORF3a gene (S26L and

T223I), M gene (D3G and I82T), ORF7b gene (T40I) and N gene (D63G and S413R) associ-

ated with changes in viral copies. The results are based on the multivariate regression analysis

using the two MDS components as covariates. (A) The phylogenetic tree estimated from a rep-

resentative set of 996 genome sequences showing variant assignments and the locations of

amino acid changes that increase (blue) or decrease (red) viral copies. (B) The temporal

dynamics of the SNPs from February 2021 to March 2023. The transparency of the color corre-

sponds to the mutation fraction in the daily sequence count: transparent color indicates low

fractions, and opaque color indicates high fractions.

(TIF)

S12 Fig. Comparison of key variant-defining amino acid changes with GWAS-identified

substitutions. The comparison of the key amino acid changes (dark purple) in each variant,

with GWAS-identified SNPs that were associated with negative (red) or positive (blue) effects

on viral copies in the (A) S gene and (B) ORF1ab gene. The results of GWAS analysis using the

two dimensions computed by MDS as covariates are shown as “GWAS 1”, and the results of the

analysis using the categorical clusters as covariates are shown as “GWAS 2”. The effective sizes

of identified SNPs using different population control methods are given in S1 and S2 Tables.

(TIF)
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S1 Table. The identified amino acid changes associated estimated effective sizes and stan-

dard deviations using the multivariate linear regression model with categorical clusters as

covariates.

(DOCX)

S2 Table. The identified amino acid changes associated estimated effective sizes and stan-

dard deviations using the multivariate linear regression model with MDS-computed

dimensions as covariates.

(DOCX)
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